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Introduction 

The scattering of electrons gives rise to the electrical 
resistivity. The free electron model of electric transport i.e. free 
electrons move through the crystal lattice and they are influenced 
only by the attractive forces of the ions. Under the influence of ions, 
the electrons move in a potential which varies from point to point, 
but whose variation is not random, it has a periodicity which is 
exactly the same as that of ionic lattice. The electrical resistivity of 
most metals is dominated at room temperature by collisions of the 
conduction electrons with lattice phonons and at liquid Helium 
temperature (40

0
k) by collision with impurity atoms and mechanical 

imperfection in the lattice 
[1, 2].

 Scattering of electron will only occur 
when the periodicity of the potential is upset. In past a number of 
compounds have been found which possess electrical conductivity 
in solid state 

[3, 4]
.Inokuchi and Akamatu 

[5]
 gave a review on 

electrical conductivity of semi conductors. Due to the weak 
intermolecular forces the resistivity of organic solids falls off rapidly 
with rise in temperature. Temperature dependence of electrical 
conductivity is the most important feature towards the study of 
electrical conductivity. 
At low T lattice imperfections and IMPURITIES are most responsible 
for the resistivity. At higher T atoms vibrate with much larger 
amplitude and therefore atomic vibrations contribute dominantly to 
resistivity at room temperature.The empirical observation of 
resistivity due to phonon and resistivity due to imperfection can be 
expressed in the form of Matthiessen's rule.

[5] 

               
 The Bloch  T

5
 law 

[7]
  describes  the electrical resistivity at low 

Abstract
Electrical conductivity is the interaction of electron with the 

lattice by collision processes in which energy and momentum are 
exchanged. The electrical conductivity of crystals is one of the 
most important non-equilibrium properties, which shows that how 
a system relaxes to its equilibrium distribution. An electron is 
accelerated by the external field between two collision processes. 
The scattering of electrons gives rise to the electrical resistivity. 
The theory of electrical conductivity has been investigated with the 
help of quantum dynamical approach after considering the model 
Hamiltonian which consists of the state of a real crystal containing 
phonon system, electron system, localized impurities and 
interactions thereof. The interaction of electrons with defect 
induced localized phonon fields with anharmonic forces, which 
ultimately gives rise, resistance to electronic transport. An electron 
is scattered out by lattice vibration, the process is similar to which 
phonon interact. Consequently the potential on electron is 
disturbed and gives the possibility of scattering. Analysis shows 
that the electrical conductivity depends on a large number of 
scattering events and on crystal characteristics and temperatures. 
Static defects and thermal vibration of lattice are responsible for 
the scattering of electrons. Present study shows that electrical 
conductivity directly depends on electron-phonon scattering. 
Electron phonon scattering is collectively electron-electron 
scattering, electron-phonon scattering, cubic and quartric phonon 
electron scattering. The evaluation of electrical conductivity 
expression shows that it depends on (i) harmonic force fields (ii) 
localized phonon fields and (iii) Anharmonic forces. In present 
study it is shown that the experimental variation for electrical 
conductivity is similar to the theoretical curves. 
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temperature.But this law gives some difficulties 
both experimentally 

8-10]
and theoretically

.[11-13]
The 

observation done by Ekin and co-workers
[8,14]

 for 
electrical conductivity revealed that the behavior 
of electrical resistivity is quite complicated and 
does not exhibit T

5
 dependence. At low 

temperature, the resistivity increases in T
2
 

instead of the usual T
5
 dependence

.[15,16],
 T

2
 

dependence is usually observed in alloys. A 
general theory of electrical conductivity of alkali 
metals at low temperature have been presented 
by Kaveh and Wisher 

[17]
 and reported that 

phonon drag contribution is important at very low 
temperature

.[18]
 

   This paper deals with the general 
theory of electrical conductivity. Here we 
considered a complete Hamiltonian to study the 
theory of electrical conductivity. This Hamiltonian 
constitutes (i) Unperturbed phonon Hamiltonian 
(ii) Harmonic electron Hamiltonian (iii) Defect 
induced Hamiltonian and (iv) the anharmonic 
Hamiltonian. A two electron Green's function is 
obtained strictly on the basis of many particle 
systems and then applied to the Kubo formalism.  
Kubo formalism of Electrical Conductivity  

 Many experiments in condensed matter 
physics measure the linear response to an 
external perturbation. The external perturbation 
can be generated by putting the sample in a 
magnetic field, electric field, optical field, 
temperature gradient or pressure field and 
measure the magnetization, electric current, light 
absorption etc. Linear response means that the 
signal is directly proportional to the intensity of 
the external perturbation. 
 The equation for linear responses for the 
transport in liquids was first derived by 
Green.[19,20] Kubo derived the equation for 
electrical conductivity in solids[21,22], and so the 
formulae called Kubo formulae in the condensed 
matter physics. In electrical conduction, a time –
dependent external electric field, 

    tiiqrextext eEtrE 


 .. ,
                                                 

                 (1.1) 
is applied to the solid. In linear response induced 
current is proportional to the applied electric field 

    tiiqrexteEqtrJ 
   ,, '

                                                                                   

(1.2) 

The applied external field 

 .extE  induces 
currents which in turn make other electric fields. 
The summation of all these fields in the total 

electric field, which is called  trE .   

The conductivity   is the one which 
responds to the actual electric field in the solid; 

 

     trEqtrJ ,,, '




      

                                                                    (1.3)                                                
 Where  

   trEqtrE ,,, '





 







 (1.4) 

and  

     ImRe, iq 







                                                     

(1.5)                                     
equation (1.3) describes the fundamental 

microscopic conductivity 









 ,q

. 
 The equation (1.3) is correct for a 
homogeneous material; actual solids are not 
homogeneous, although crystals are in space- 
time periodic responses. 

     ','';''', '3 trEttrrdtrdtrJ     




        

(1.6) 
 If we consider the dc conductivity which 

is obtained by taking the limit 
0q

 and 

0  in that order. Then the conductivity is 
only real. In beginning only a single frequency is 
perturbing the system were considered and that 

  ,q
 is the response to this single 

frequency. But actually the system is linear and 
perturbations at different frequencies act 
independently, so the total current is then the 
summation of the responses at different 
frequencies. The Kubo formula for electrical 
conductivity is, 

   ''
1

, ttiedtq 





 





 

      



m

en
itqJtqJ o

2

',ˆ,', 
           

(1.7) 
The electrical conductivity can be 

defined in terms of current – current correlation 
functions as [23] 

      


 


 0,,,
1

,
0

qJtqJedtq ti  




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
m

ein
i o

2


                                          (1.8) 

where n0 is electric density . 
Using the operator formalism [24] the electrical 
conductivity expression can be rearranged as. 

     

























  

m

en
qFiq

2

0,/,


                                                                      (1.9) 
Electron – Phonon anharmonic Hamiltonian  

           Considering defect induced 
electron-phonon anharmonic Hamiltonian as – 
 

daepoeop HHHHHH 
                             

(1.10) 
where, Hop is the harmonic phonon 

Hamiltonian, Hoe is the electron Hamiltonian, Hep 
is the electron-phonon interaction part, Ha is the 
anharmonic part and Hd contribution due to 
defects[25,26]. 

 kkkk

q

kOp BBAAH   



4

1

                                                                       
(1.10a) 

 qq

q

qOe bbH  


                           
(1.10b) 
                                                        

 kqQ

q

ep BbbgH 




    
(1.10c) 
     

 
skkksssa AAAkkkVkkkH ...,,....,,....,

212121

                                                               (1.10d) 

     
21212121

,,, 21,, kkkkkkkkd BBkkCAADH

                                                       (1.10e) 
where 




  kkkk AaaA

 
and 




  kkkk BaaB

 

 kk aA
 and 

 

 qq bb
 are phonon and 

electron destruction (creation) operators 
respectively with phonon wave vector K (=Kj) of 
branch index j and electron wave vector q and 
spin σ.  Єq stands for the electron energy, Єk 

phonon energy and g stands for the electron-
phonon coupling coefficients respectively, 
Vs(k1,k2….ks),C(k1,k2)and D(k1,k2) represents the 
anharmonic coupling coefficients, mass change 
and force constant change parameters 
respectively

.[27,28] 

 

Electron, Electron Green Function  

 The Green function 

  qq

e

qq bbttG ;','


 with the help of 

equation (1.10) using the equation of motion 
technique of quantum dynamics [29-33], can be 
evaluated in the form 

 
 ),(

'

'





kqP
G

epq

qqe

qq





             
(1.11) 

where the response function 
),( kqPep

 can 
be obtained is the form 

),(),(),( )(  kqPkqPkqP d

ep

o

epep 

 

),(),( 43  kqPkqP A

ep

A

ep 
                                                 

 (1.12) 
The response function can be expressed 

in terms of real and imaginary parts 

 ,kqep
 and 

 ,kqep
 known as 

shifts and widths for electron phonon energies 
respectively as 

       OkqikqikqP epepep ,,,, 

(1.13) 
Using equation (4.28) in equation (4.21) we get, 

       1

'' ,~/


  kgiiG epqqq

e

qq

         (1.14) 
where 

 ,~ kqepqq 
                                                                            

(1.15) 
and 

      ,,, )0( kqkqkq D

epepep 

    ,, 43 kqkq A

ep

A

ep 
                                                       

(1.16) 
The imaginary part of the Green's 

function 
 e

qqG '  takes the form 

 
 

    




,~

,
Im

22

'

'
kq

kq
G

epq

qqe

qq





                                          
(1.17) 
The Electrical Conductivity  

 Putting the value of the Green function 
from equation (1.17) in equation (1. 9) we get, 

     qPqPq qQQq

qQ





 










2

)1( 2
,
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   

    222

22

,~

,





kq

kqN

epq

ep





                                  
                 (1.18) 
After using Breit-Wigner approximation we have 

 

 
     

 
qepq

q

qQQq

qQ

kq

NqPqP

q














~,~

~2

,

2

2

)1(











 (1.19) 

 The width 
 ,kqep

 is a measure of 
the life time of the scattering events (relaxation 

time) 
),(1  kqep



. Referring to equation 
(1.16) it is evident that  

  11)0(1 ),(),(),(
   kqkqkq D

epepep

 

    1413 ),(),(


  kqkq A

ep

A

ep
                               

 (1.20) 
if Matheson’s rule is followed for these events 

then it  reveal that (1) 
),( kqep

 inevitable 
dependence on the electron-phonon coupling 
coefficient g, i.e. electrical conductivity shows 
strong dependence on the electron-phonon 
interactions. This may be understood in following 
ways :  
(a)Electrons gains energy from localized 
phonons present around the impurity sites, and 
(b) Electrons gain energy from the anhamonic 
phonon fields, which certainly change their 
nature with temperature  
    and frequency. 

(ii) the term   is present throughout in 

),(),,()0(  kqkq D

epep 
and 

),( kqA

ep

. Let us examine the nature of   in more detail. 
Under a reasonable approximation of first order if 
we ignore the defect and anharmonic of 

contributions to   and get 

    kkkqkkkkq nnnng  
~~~22

                                                             (1.21) 

Thermal dependence of 
 k  invariably 

makes  a function of temperature. 
Analysis and Conclusion 

 The interaction of electrons with defect 
induced localized phonon fields with anharmonic 
forces, which ultimately gives rise, resistance to 
electronic transport. An electron is scattered out 
by lattice vibration, the process is similar to which 

phonon interact. Consequently the potential on 
electron is disturbed and gives the possibility of 
scattering. The evaluation of electrical 
conductivity expression shows that it depends on 
(i) harmonic force fields (ii) localized phonon 
fields and (iii) Anharmonic forces. 
 Considering a complete Hamiltonian and 
the relaxation times approximation reminds the 
phenomenological model of lattice thermal 
conductivity given by Callaway.[34] The 

dependence of 

 








 ,1 q

 on the magnitude of 
disorders and anharmonicities infers that 
electrical conductivity is a function of phonon 
energy, Fermi energy, temperature and defect 
concentration. 

The term 

  ,0 kqep
 gives the contribution to 

the energy width at electron energy 

q
.The defect term 

  ,kqD

ep
 

exhibits the broadening at 
Qk  ,'

. The 
cubic anharmonic term shows broadening of 

delta function at 
  qqkk  ,,

21


 
and the quartic term show that at 

  Qqkkk  ,,
321


.These 

all terms are temperature dependent. 

At low temperature the 
 ,kqep

 contributed 

by

  ,0 kqep
and

  ,kqD

ep
, 

 ,kqA

ep
 

has negligible values. The magnitude of 
  ,kqD

ep
 largely depends on the defect 

concentration.  
At very low temperature, 

 

 
  










































qQ qqep

q

qQQq

k

NqPqP

q ~,

~
2

,
0

2
2

1







 

 

 
   

















qqep

qq

D

ep

k

k

~,

~,1
0

                                                                                          
(1.22) 
At moderate temperatures 

       































 

qQ

qqepq

qQQq kNqPqPq ~,~2
, 02

2

1



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   
    


















qq

D

epqqep

qq

A

ep

qq

D

ep
kk

k
k

,,

,1
,

0

3
1

                     
(1.23) 
At high temperatures, 

 

 

    









































qQ qq

A

epqq

A

ep

q

qQQq
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NqPqP

q
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~
2

,
43

2
2

1







 
 

    
   
















qq

A

epqq

A

ep

qq

D

epqqep

kk

kk

,,

,~,
1

43

0

         
(1.24) 
 Present study shows that the electrical 
conductivity is not a function of electron energy 
but it depends on a large number of factors i.e. 
Fermi energy, nature of Fermi surface, phonon 
energy in the form of single frequency or 
combination band, temperature, defect 
concentration and electron phonon coupling. 
 On the basis of above theory we have 
tried to analyze the electrical resistivity of pure 
silicon crystal and silicon phosphorous alloy. 
Silicon is an element of the fourth group of the 
periodic table. Each silicon atom has four near 
neighbors with which it forms covalent bonds in 
tetrahedral configuration. The specific gravity is 
about 2.4 and the melting point 1420

0
C, the 

dielectric constant is about 13. Fig. (A.1) gives 
the theoretical values compared with 
experimental points.[35] The initial resistivity at 

room temperature is about 140  -cm., but at 
temperature to 700

0
k the resistivity reduced to 50 

 -cm., this behaviour continued to higher range 
of temperature. Higher the temperature lower the 
resistivity so with increase in temperature the 
conductivity increases. This is because with 
increase in temperature the electron gets energy 
and overcome the resistance offered by the 
crystal, so the conductivity increases. This 
change of the electrical resistivity of silicon 
crystal with temperature indicates a change in 
the electrically active impurities. The rapid 
decrease in resistivity with increase in 
temperature results from the increase in 
concentration of electrons and holes which arises 
from thermal excitation of electron.  
 The electrical conductivity at room 
temperature depends on the presence of 
impurities. It is estimated that ideally pure silicon 
would have a resistivity of about 106 ohm-cm. By 
adding the impurity atoms the resistivity can be 
reduced. Elements of third group give p-type 
conductivity and element of fifth group give n-

type conductivity. The impurity which gives p-
type conductivity are called acceptors and those 
which give n-type conductivity are called donors. 
A substitution impurity atom from the fifth group 
has one more valence electron than is required 
to fill the four valence bonds with neighboring 
silicon atoms. In its lowest energy state, this 
extra electron is weakly bound by the extra 
charge on the nucleus of the impurity atom. A 
trivalent impurity atom has one less electron than 
is required to fill the valence bonds. 
 The extra electron required to fill the 
valence about the trivalent impurity gives the 
atom an effective negative charge, so that it 
becomes in effect a negative ion. In its lowest 
state, the positive hole will be weakly bound by 
electro-static field of the negative ion. The 
ionization energy is likewise of the order of 
thermal energy. At room temperature the majority 
of the acceptor impurities will be dissociated into 
holes and negative ions. Fig. (A.2) gives the 
theoretical values compared with experimental 
values 

[36].
 

 At high temperature the resistivity falls 
down hence conductivity increases. This is 
intrinsic region in which there is approximately 
equal concentration of electrons holes. At lower 
temperature the resistivity depends on the 
impurity content, increasing the amount of 
impurity lower the resistivity. The rapid decrease 
of resistivity with temperature in the intrinsic 
range results from the increase in concentration 
of electrons and holes which arise from thermal 
excitation of electrons. 
 At lower temperature impurities 
contribute to the scattering, so that the mobilities 
are higher in the pure samples. The impurity 
centers which give the largest scattering are the 
donors and acceptors. Scattering by both ionized 
and neutral centers is large at low temperatures. 
At lower impurity concentration, electron – 
electron interaction is important. These 
interactions drastically reduce conductivity for 
low concentration. At low temperature the 
impurities are effective and offers a large 
resistance but at higher temperature due to the 
thermal excitation of electrons the electron get 
energy and overcome consequently the 
conductivity increases. 
                     In present study the experimental 
variation for electrical conductivity is similar to 
the theoretical curves. Above analysis shows that 
the electrical resistivity depends on scattering of 
electrons. Static defects and thermal vibration of 
lattice are responsible for the scattering 
electrons. Present study shows that electrical 
conductivity directly depends on electron-phonon 
scattering. Electron phonon scattering is 
collectively electron-electron scattering, electron-
phonon scattering, cubic and quartric phonon 
electron scattering and force constant change 
and electron phonon coupling constants. 
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 Fig. A.1  Electrical resistivity of single-crystal of 

silicon 
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Fig. A.2  Resistivity of silicon –phosphorus alloy 
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